氧气在玻璃工业中,工业气体在平板玻璃、容器玻璃、电视玻璃或者特种玻璃以及光纤 玻璃的生产中都得到了应用。 玻璃熔化 在玻璃熔炉的加热中,氧气的使用可以显着提高设备的效率。通过用纯氧替代空气(约79 %的氮气和 约21 %的氧气)来作为玻璃熔炉里的燃烧介质,可以减少或者完全替代多余的氮气。这样不仅能够实 现更高燃烧效率,而且可以显着减少废气的排放量。当玻璃熔炉以“纯氧加热”(“纯氧+燃料”) 的方式运行时,可以通过现场制气设备(VSA或SIGMA)来保证氧气供应。客户收益:提高生产率, 减少废气排放量,减少有害物质的排放(氮氧化物,二氧化碳,粉尘...),储热器或者换热器不容易 发生损坏,减少燃料费用。 火抛光 为了使玻璃制品在成型后有一个**的外表,可以用氢氧焰对其表面进行抛光处理。传统的化学抛光 或者机械抛光工艺的应用都比较复杂。而普通的空气燃气焰又只能用于厚壁玻璃制品。氧气燃烧器, 它的功率可以进行调节,因而其氢氧焰可以可控地重新熔化玻璃的表面,来消除其锋利的边缘、修 剪的痕迹和模具的接缝,从而提高其表面光洁度。客户收益:提高玻璃制品的光亮度和透明度,需 要消除细微的玻璃缺陷,替代化学抛光或机械抛光,可以得到一种同时适合厚壁和薄壁件的抛光工 艺,节省燃料费用。 精整 在玻璃制品的后处理加工中,可用富氧燃气焰对玻璃表面进行精整加工。利用氧气燃气火焰的高温和高热传导率,可以在精整时消除锋利的 边缘和模具痕迹等缺陷。这项工艺尤其适合在连续加工过程中用来提高后处理设备的性能。同样的效果,更短的加工时间显着节省燃料更少 更小的燃烧器调节方便的纯氧燃气火焰减少烟雾的生成很高的表面热传导率。 模具润滑 在乙炔模具润滑技术中,通过在玻璃模具上沉积一层精细的碳黑,可以使玻璃制品在冷却后更容易和模具分离。在炙热的纯氧燃气火焰中, 乙炔会发生分解反应。分解产生的碳黑微粒会沉降到玻璃模具上形成精细的碳黑层。客户收益:减少模具污染,减少报废品,可简单实现 自动化,更好的工作环境。 玻璃纤维 通过在以气、油、煤为燃料的不同场合进行富氧应用试验,用23%的富氧助燃可节能10%~25%;用25%的富氧助燃可节能20%~40%;用27 %的富氧助燃可节能30%~50%等。玻璃行业的全氧燃烧熔制技术,即采用纯度为90%~93%的氧气替代空气燃烧,适用于玻璃熔窑中以重 油、煤焦油、天然气及煤转炉的煤气助燃,全氧燃烧的优势在于减少烟气及烟气中氮氧化物的排放,节约能源,在不考虑制氧消耗能 源的基础上,一般认为全氧燃烧与普通空气燃烧相比,可节约燃料30%以上。过富氧或全氧助燃,可改善火焰结构,提高玻璃质量以及 利用率,延长池炉的寿命,减少烟尘排放量,节能、增产和环保效益显着,必将成为玻纤行业的主流发展趋势。